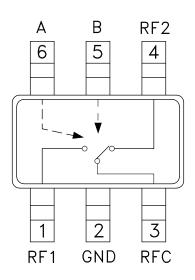


HMC197B / 197BE

v00.0213


GaAs MMIC SOT26 SPDT SWITCH, DC- 3 GHz

Typical Applications

The HMC197B(E) is ideal for:

- MMDS & WirelessLAN
- PCMCIA Wireless Cards
- Portable Wireless

Functional Diagram

Features

Low Insertion Loss: 0.4 dB Ultra Small Package: SOT26

Input IP3: +59 dBm

Positive Control: 0/+3V @ 3 µA

General Description

The HMC197B(E) is a low-cost SPDT switch in a 6-lead SOT26 plastic package for use in general switching applications which require very low insertion loss and very small size. The device can control signals from DC to 3 GHz and is especially suited for 900 MHz, 1.8 - 2.2 GHz, and 2.4 GHz ISM applications with less than 1 dB loss. The design provides exceptional insertion loss performance, ideal for filter and receiver switching. RF1 and RF2 are reflective shorts when "Off". The two control voltages require a minimal amount of DC current and offer compatibility with most CMOS & TTL logic families. See HMC221B(E) for same performance in an alternate SOT26 pin-out.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vctl = 0/+3 to +8 Vdc, 50 Ohm System

Parameter	Frequency	Min.	Тур.	Max.	Units
Insertion Loss	DC - 1.0 GHz DC - 2.0 GHz DC - 2.5 GHz DC - 3.0 GHz		0.4 0.4 0.4 0.5	0.7 0.8 0.9 1.1	dB dB dB dB
Isolation	DC - 1.0 GHz DC - 2.0 GHz DC - 2.5 GHz DC - 3.0 GHz	24 24 18 14	30 34 29 24		dB dB dB dB
Return Loss	DC - 1.0 GHz DC - 2.0 GHz DC - 2.5 GHz DC - 3.0 GHz	20 16 14 10	35 31 28 24		dB dB dB dB
Input Power for 1dB Compression (Vctl = 0/+5V)	0.5 - 1.0 GHz 0.5 - 3.0 GHz	25 23	30 29		dBm dBm
Input Third Order Intercept (Vctl = 0/+5V) (Two-tone Input Power = +10 dBm Each Tone)	0.5 - 1.0 GHz 0.5 - 3.0 GHz	40 38	59 55		dBm dBm
Switching Characteristics	DC - 3.0 GHz				
tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)			3 10		ns ns

HMC197B* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

• HMC197B Evaluation Board

DOCUMENTATION

Data Sheet

• HMC197B Data Sheet

REFERENCE MATERIALS -

Quality Documentation

Semiconductor Qualification Test Report: PHEMT-J (QTR: 2013-00285)

DESIGN RESOURCES

- HMC197B Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC197B EngineerZone Discussions.

SAMPLE AND BUY 🖵

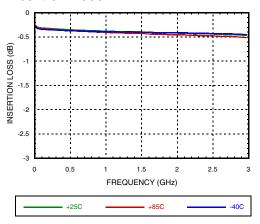
Visit the product page to see pricing options.

TECHNICAL SUPPORT

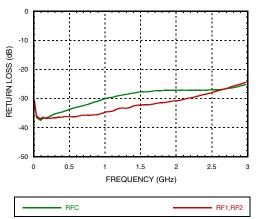
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

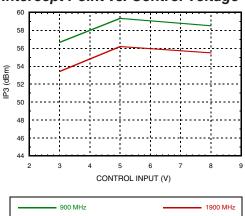
Submit feedback for this data sheet.

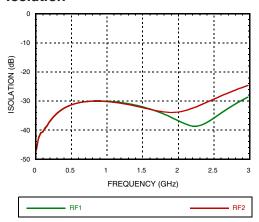


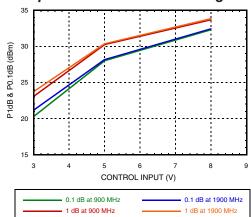
v00.0213



GaAs MMIC SOT26 SPDT SWITCH, DC- 3 GHz


Insertion Loss


Return Loss


Input Third Order Intercept Point vs. Control Voltage

Isolation

Input 0.1 and 1.0 dB
Compression vs. Control Voltage

Distortion vs. Control Voltage

Control Input	Third Order Intercept (dBm) +10 dBm Each Tone		
(Vdc)	900 MHz	1900 MHz	
+3	57	53	
+5	59	56	
+8	58	55	

Truth Table

*Control Input Voltage Tolerances are ± 0.2 Vdc.

Contro	l Input*	Control Current		Signal Path State		
A (Vdc)	B (Vdc)	la (μΑ)	lb (μA)	RF to RF1	RF to RF2	
0	+3	-0.5	0.5	ON	OFF	
+3	0	0.5	-0.5	OFF	ON	
0	+5	-1.1	1.1	ON	OFF	
+5	0	1.1	-1.1	OFF	ON	
0	+8	-8	8	ON	OFF	
+8	0	8	-8	OFF	ON	

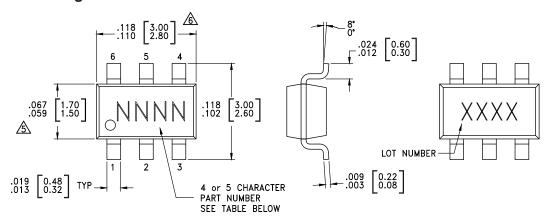
v00.0213

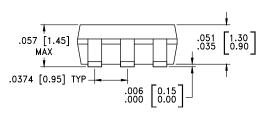
GaAs MMIC SOT26 SPDT SWITCH, DC- 3 GHz

Compression vs. Control Voltage

	Carrier at 900 MHz		Carrier at 1900 MHz		
Control Input	tor01dB tor10dB		Input Power for 0.1 dB Compression	Input Power for 1.0 dB Compression	
(Vdc)	(dBm) (dBm)		(dBm)	(dBm)	
+3	21	24	21	24	
+5	28 30		27	30	
+8	32	34	32	34	

Caution: Do not operate in 1dB compression at power levels above $+31\,$ dBm (Vctl = $+5\,$ Vdc) and do not "hot switch" power levels greater than $+20\,$ dBm (Vctl = +5Vdc). DC blocks are required at ports RFC, RF1 and RF2.


Absolute Maximum Ratings


Control Voltage Range (A & B)	-0.2 to +12 Vdc	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 1A	

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

NOTES:

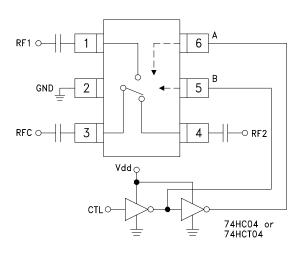
- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

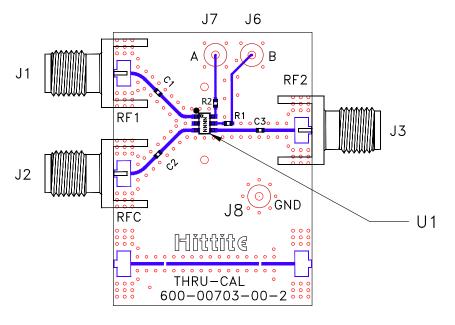
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC197B Low Stress Injection Molded Plastic		Sn/Pb Solder	MSL1 [1]	197B XXXX
HMC197BE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	197BE XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

v00.0213



GaAs MMIC SOT26 SPDT SWITCH, DC- 3 GHz


Typical Application Circuit

Notes:

- Set logic gate and switch Vdd = +3V to +5V and use HCT series logic to provide a TTL driver interface.
- Control inputs A/B can be driven directly with CMOS logic (HC) with Vdd of 5 to 8 Volts applied to the CMOS logic gates.
- DC Blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.
- Highest RF signal power capability is achieved with Vdd = +8V and A/B set to 0/+8V.

Evaluation Circuit Board

List of Materials for Evaluation PCB EVAL01-HMC197BE[1]

Itam	Description
Item	Description
J1 - J3	PCB Mount SMA RF Connector
J6 - J8	DC Pin
C1 - C3	330 pF Capacitor, 0603 Pkg.
R1, R2	1 kOhm Resistor, 0402 Pkg.
U1	HMC197B / HMC197BE SPDT Switch
PCB [2]	600-00703-00 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 Ohm impedance and the package ground leads and package bottom should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.