
PC-I2C-KIT
with MDIO and SPI support

Quick Start Manual

FDI Future Designs, Inc.
Your Development Partner

Information in this document is provided solely to enable the use of Future Designs, Inc. products.
FDI assumes no liability whatsoever, including infringement of any patent or copyright. FDI
reserves the right to make changes to these specifications at any time, without notice. No part of
this document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Future Designs, Inc. 2702
Triana Blvd SW, Huntsville, AL 35805-4074.

 2004 Future Designs, Inc. All rights reserved.

Microsoft, MS-DOS, Windows, Microsoft Word are registered trademarks of Microsoft
Corporation.
Other brand names are trademarks or registered trademarks of their respective owners.

P:\PC Products\PC-I2C\Docs\Manual\Pci2c Quick Start V3_E.doc, Revision 3.E, 3/11/2004 1:05
PM
Printed in the United States of America

 i

Table of Contents

1. INTRODUCTION__ 1

2. PC-I2C-KIT CONTENTS ___ 1

3. BEFORE YOU BEGIN ___ 2

3.1 Warnings ___ 2

3.2 Requirements___ 2

3.3 Power Requirements __ 2

4. GENERAL OPERATION ___ 3

4.1 Installing the PC-I2C Software ___ 3

4.2 Connecting the PC-I2C Board to your computer ___ 3

4.3 Setting the Bus Speed___ 3

4.4 I2C Operation ___ 4

4.4.1 On-Board EEPROM (U2)__ 4

4.4.2 Connecting the PC-I2C Board to your peripheral _______________________________________ 4

4.4.3 Configuring the PC-I2C Board __ 4

4.5 MDIO Operation___ 5

4.5.1 MDIO Support ___ 5

4.5.2 MDIO Setup of the PC-I2C Board__ 5

4.5.3 On board I2C EEPROM___ 5

4.6 SPI Operation___ 6

4.6.1 SPI Support ___ 6

4.6.2 SPI Setup of the PC-I2C Board__ 6

4.6.3 On board I2C EEPROM___ 6

5. APPENDICES___ 7

5.1 Appendix A: Jumper Settings __ 7

5.2 Appendix B: Connector Functions and Locations ___ 8

5.3 Appendix C: Software Updates___ 9

5.4 Appendix D: Technical Support __ 9

5.5 Appendix E: Disclaimer__ 9

5.6 Appendix F: Verification Procedure ___ 10

5.7 Appendix G: Device Descriptor Files Specification _______________________________________ 11
5.7.1 Device Descriptor File Overview___ 11
5.7.2 [DEVICE] __ 11
5.7.3 [REGISTER]__ 12
5.7.4 [MEMORY] ___ 14
5.7.5 SPI Specific [MEMORY] Tokens ___ 15
5.7.6 Example Device Descriptor File ___ 18

5.8 Appendix H: Sequence Descriptor Files Specification ____________________________________ 21
5.8.1 Sequence Descriptor File Overview__ 21
5.8.2 Sequence Descriptor File Tokens ___ 21
5.8.3 Example Sequence Descriptor File __ 23

 ii

1. INTRODUCTION

The PC-I2C-KIT interfaces to the standard Parallel Printer Port on any
IBM-compatible PC and allows bi-directional communications with I²C,
MDIO, and SPI based peripherals. The software runs on Windows 9x,
Windows NT4.0 (SP3 or greater), Windows 2000, or Windows XP (Home
or Professional). The software allows the user to easily select a peripheral
from the menu of supported devices. Users can add new devices through
the use of Device Description Files (DDF). (See Appendix G for a further
description of DDFs.) The kit comes complete with Software, PC-I2C
board, Quick Start Manual and an 18” cable to allow direct connection to
the user’s application or any of the standard I²C demo boards.

In addition, the PC-I2C Board provides a socket for direct connection of an
on-board EEPROM to the I²C bus. This allows you to program I²C
EEPROMs with only your computer, power supplied by a target, and the
PC-I2C Adapter Board. A PCF8582 EEPROM is even supplied with PC-
I2C-KIT.

2. PC-I2C-KIT CONTENTS

• PC-I2C Board with PCF8582 EEPROM
• 4-pin connecting cable (18” length)
• Software
• PC-I2C Quick Start Manual
• Registration Form

 1

3. BEFORE YOU BEGIN

3.1 Reference Information

This manual assumes that the user has some experience with I²C, MDIO,
SPI, and basic electronics. For more details on the operation of the I²C
bus please refer to the appropriate Philips Semiconductors
documentation. Philips Semiconductors provides technical information for
the I²C bus. For more details on MDIO, refer to the IEEE web site
(www.ieee.org).

Some excellent sources of information
I2C:
• 80C51 Based 8-Bit Microcontrollers Databook (Philips Document #

IC20)
• I²C Peripherals Databook (Philips Document # IC12)
MDIO:
• IEEE 802.3 Working Group
SPI:
• http://www.mct.net/faq/spi.html

3.2 Requirements

• Windows 9x/NT/2000/XP
• 2MB Disk Space
• CD-ROM drive (used for installation only)
• Parallel Printer Port (LPT1 – LPT3 are supported)

3.3 Power Requirements

JP2 must be jumpered 2-3. This setting for jumper JP2 configures the PC-
I2C Board for target power. The target board or adaptor must then provide
power to the PC-I2C Board. The PC-I2C Board requires 1.2 – 5.5VDC at a
maximum of 35 mA with typical current consumption at approximately 16
mA. This allows the PC-I2C to be used with other boards operating at 1.2
– 5.5 VDC.

Note: The PC-I2C will not work properly when other devices are connected to
the parallel port. (Such as scanners, cameras, printers, or copy protection keys)

 2

4. GENERAL OPERATION

4.1 Installing the PC-I2C Software

• Insert the CD into the CD-ROM drive
• Select PC-I2C to install.
• Follow the instructions provided by the software installation program.

4.2 Connecting the PC-I2C Board to your computer

• Ground yourself before handling the PC-I2C Board by touching the bare
metal on the rear of your computer.

• It is not necessary to power-down the PC before connecting the PC-I2C
Board.

• Remove the PC-I2C Board from the anti-static bag.
• Select an available Parallel Printer Port.

Note 1: Verify that the connector is actually a Parallel Printer Port
since there are some SCSI cards that utilize the same style
connector.

Note 2: It is strongly recommended that the PC-I2C Board be
connected directly to your computer. Correct operation of the
PC-I2C Board can not be guaranteed if it is connected
through a parallel printer cable or switch box.

• Connect the PC-I2C Board to the Parallel Printer Port connector (Female
DB25).

Warning: Improperly attaching the PC-I2C Board to
connectors other than a Parallel Printer Port may cause
damage. (A SCSI port can seriously damage the PC-I2C
board.)

4.3 Setting the Bus Speed

The PC-I2C software allows you to change the Bus Speed to suit your
application. This allows communications with slow peripheral devices,
such as an analog to digital converter or a microcontroller without a
hardware interface, and high-speed devices operating at frequencies up to
100 KHz.

The Bus Speed is set on the Main Program Window. This allows
adjustment of this parameter over the supported range.

 3

4.4 I2C Operation

4.4.1 On-Board EEPROM (U2)

The on-board EEPROM socket U2 provides support for the included
PCF8582 as well as most I²C EEPROMs in an 8-pin DIP package. The
PC-I2C Software allows programming of most I²C EEPROMs at the
default address.

Note: The default I²C address for this on-board EEPROM device is 0xA8.

If an external I²C device using this address (0xA8) is connected to the PC-
I2C Board, the EEPROM in socket U2 should be removed to avoid
address conflicts.

4.4.2 Connecting the PC-I2C Board to your peripheral

Included in the PC-I2C-KIT is an 18” four-conductor cable for connecting
the PC-I2C Board to another I²C Board. Extreme care should be taken to
verify the proper power & ground connections. The PC-I2C Board or your
I²C Board may be damaged by improper connection of this cable. The PC-
I2C Board provides a connector (J2) for use with external I²C peripherals.
This connector supports the common pinout used on other I²C
development and demonstration boards. This allows direct connection to
the PC-I2C Board with the included one-to-one cable.

4.4.3 Configuring the PC-I2C Board

For normal operation, no configuration changes should be required on the
PC-I2C Board.

The jumper on JP2 must be in the 2-3 position. This setting configures the
PC-I2C Board for target power supply. The target board must then provide
power to the PC-I2C Board via the connection. The PC-I2C Board
requires 1.2 – 5.5VDC at a maximum of 35 mA with typical current
consumption at approximately 16 mA. This allows the PC-I2C to be used
with other boards operating at 1.2 VDC – 5.5 VDC.

 4

4.5 MDIO Operation

4.5.1 MDIO Support

PC-I2C supports and has been tested for IEEE 802.3 serial
communications using clause 22 and clause 45. Information regarding
IEEE standards can be found at www.ieee.org. DDF and SDF files,
outlined in Appendix G and Appendix H respectively, can be used for
MDIO operations. If you purchased a PC-I2C-DEV, there are also
functions available for programs using MDIO.

4.5.2 MDIO Setup of the PC-I2C Board

For normal MDIO operation, follow the General Operations in section 4
keeping in mind that the SCL line is equivalent to the MDC line and the
SDA line is equivalent to the MDIO line. No configuration changes should
be required on the PC-I2C Board. The PC-I2C Board also includes one
connector (J3) for MDIO. This connector supports the common pinout
used for communication with other MDIO boards.

The jumper on JP2 must be in the 2-3 position. This setting configures the
PC-I2C Board for target power supply. The target board must then provide
power to the PC-I2C Board via the connection. The PC-I2C Board
requires 1.2 – 5.5VDC at a maximum of 35 mA with typical current
consumption at approximately 16 mA. This allows the PC-I2C Board to be
used with MDIO target boards operating at 1.2 VDC – 5.5 VDC. Since the
MDIO spec is less than 5VDC, setting JP2 to PC power is not an option
because it may damage the MDIO device. This is due to the PC Parallel
Port’s power output voltage of 5VDC. The jumper on JP2 must be in the
2-3 position.

Note: If JP2 is set to anything other than target power (2-3) in MDIO
operation serious damage to the target board can occur.

4.5.3 On board I2C EEPROM

The included I2C PCF8582C EEPROM will not respond unless an I2C
Start Condition is generated. Due to this the EEPROM should not interfere
with normal MDIO operation because an MDIO Preamble is High where
as an I2C Start Condition is Low. However, if a device does respond in
such a way as to generate a start condition, the EEPROM must be
removed from the board.

Note: Keep this EEPROM in case a return or repair is necessary later.

 5

4.6 SPI Operation

4.6.1 SPI Support

PC-I2C supports general SPI serial communications. Information
regarding SPI can be found in each device’s datasheet. DDF and SDF
files, outlined in Appendix G and Appendix H respectively, can be used for
SPI operations. If you purchased a PC-I2C-DEV, there are also functions
available for programs using SPI.

4.6.2 SPI Setup of the PC-I2C Board

For normal SPI operation, follow the General Operations in section 4.
There are a few changes to keep in mind:
• J1 should be used for SPI operation.
• When connecting your device, the CS# line on J1 should be connected

to the Chip Select (CS) line or the Chip Enable (CE) line on your target
device.

• The DIN line on J1 should be connected to the Data Out (DO) line on
the target device.

• The DOUT line on J1 should be connected to the Data In (DI) line on
the target device.

• JP3 must be configured in the 1-2 position for SPI operation.

The jumper on JP2 must be in the 2-3 position. This setting configures the
PC-I2C Board for target power supply. The target board must then provide
power to the PC-I2C Board via the connection. The PC-I2C Board
requires 1.2 – 5.5VDC at a maximum of 35 mA with typical current
consumption at approximately 16 mA. This allows the PC-I2C Board to be
used with SPI target boards operating at 1.2 VDC – 5.5 VDC.

Note: If JP2 is set to anything other than target power (2-3) in SPI
operation damage to the target board may occur.

4.6.3 On board I2C EEPROM

The included I2C PCF8582C EEPROM will not respond unless an I2C
Start Condition is generated. Due to this the EEPROM should not interfere
with normal SPI operation because SPI never requires a change in the
data line during a high clock. However, if a device does respond in such a
way as to generate a start condition, the EEPROM must be removed from
the board.

Note: Keep this EEPROM in case a return or repair is necessary later.

 6

5. APPENDICES

5.1 Appendix A: Jumper Settings

JP1 – This jumper is for use with some I²C EEPROMs with a hardware

“Write Protect” function, which requires that pin 7 of the EEPROM be
connected to Ground. JP1 is not normally loaded since most I²C
EEPROMs will not function correctly if pin 7 is connected to Ground.
Load JP1 to use other I²C EEPROMs which support the “Write Protect”
function on pin 7.

JP2 – This jumper is utilized to select the source of power for the PC-I2C

Board. JP2 must be jumpered 2-3 which allows externally supplied
power. The PC-I2C Board requires 1.2 – 5.5VDC at a maximum of 35
mA with typical current consumption at approximately 16 mA. This
allows the PC-I2C to be used with other boards operating at 1.2 – 5.5
VDC.

Warnings:
1. If JP2 is jumpered 1-2, do NOT connect the P2-I2C Board to any

other board.
2. If JP2 is jumpered 2-3, then the PC-I2C Board requires that power be

supplied from a target source. When a target power supply or I²C
peripheral board is used extreme care should be taken to verify the
power connections before powering up the I2C ‘system’.

JP3 – This jumper must be set to 2-3 for I2C or MDIO operation. It should

be set to 1-2 for SPI Operation.

 7

5.2 Appendix B: Connector Functions and Locations

P1 – This is the connection to the PC Parallel Printer Port (LPTn)

J1 – This connector may be used in any of the supported modes of
operation. When using the included cable, only I2C & MDIO modes are
supported since the cable is only 4 pins. Note that for I2C/MDIO
applications, J1 has reversed VCC/GND connections from J2, so extreme
care should be taken when using this connector. For SPI applications, this
connector MUST be used and the user must provide a custom cable for
his or her target board.

J2 – This connector ONLY supports I2C & MDIO modes of operation. The
included cable may be utilized, but extreme care should be taken to
determine the proper power and ground connection. The VCC & GND pins
are reversed from J1. Verify the power and ground connections before
powering up the PC-I2C board.

J3 – This connector is utilized for certain specific MDIO applications.

 8

5.3 Appendix C: Software Updates

PC-I2C Software updates are available directly from the FDI web site at
www.teamfdi.com.

5.4 Appendix D: Technical Support

Philips Semiconductors provides technical information for the I²C bus.
Technical support for most I²C peripherals and microcontrollers can be
found at their corresponding vendors.

IEEE provides technical information for MDIO Clause 22 and MDIO
Clause 45. Technical Support for most MDIO peripherals can be found at
their corresponding vendors.

SPI support is usually found on the individual devices’ vendors’ websites
or in the individual devices’ data sheets. SPI information can be found on
the web, as well. Some very helpful information can be found at:

http://www.mct.net/faq/spi.html

Technical Support for the PC-I2C-KIT is available directly from FDI via
email at support@teamfdi.com. You may also fax your technical support
questions to (256) 883-1241 or call us directly at (256) 883-1240. Support
questions that are emailed will usually receive faster response times than
fax or phone requests.

5.5 Appendix E: Disclaimer

ESD may damage electronic components. Be sure to touch the surface of
a grounded device (such as the bare metal on the rear of your computer)
before handling the PC-I2C Board.

FDI is not responsible for any damage that may be caused by misuse or
improper installation of the PC-I2C Board.

 9

http://www.teamfdi.com/
mailto:support@teamfdi.com

5.6 Appendix F: Verification Procedure

Before Beginning, make sure that:

• The jumper is set to pins 2 and 3 on JP2.
• The jumper is set to pins 2 and 3 on JP3.
• Power is supplied to one of the 4 Vcc pins on PC-I2C.
• Ground is supplied to one of the 6 GND pins on PC-I2C.
• EEPROM (Part # PCF8582C-2 or equivalent) is correctly positioned in PC-I2C board

(U2).
• Nothing else is attached to the PC parallel port
• No software drivers are installed that utilize the PC Parallel Port (such as camera

interfaces, scanner software, or copy protection keys)

 1. Connect PC-I2C board to parallel port on PC.

 2. Connect the connector cable to J1 on the PC-I2C board and the target I2C connector.

 3. Start up PC-I2C software and Select PCF8582C in the Device Selection Box. Click Open.

 4. Type A8 in the Slave Address field.

 5. Go to "Fill Buffer" and type 55 in “Pattern”. Click OK. Windows should all read "55".

 6. Go to "Write" and click OK. Windows should still read "55".

 7. Go to "Invert" and click OK. Windows should read "AA".

 8. Go to "Read" and click OK. Windows should read "55".

 9. Go to "Erase" and click OK. Windows should still read "55".

 10. Go to "Read" and click OK. Windows should read "FF".

If the PC-I2C completed all steps correctly, then the PC-I2C software and board are working
properly.

Note: The PC-I2C will not work properly when other devices are connected to
the parallel port. (Such as scanners, cameras, printers, or copy protection keys)

 10

5.7 Appendix G: Device Descriptor Files Specification

5.7.1 Device Descriptor File Overview

The Device Descriptor File (DDF) is an ASCII text file that completely
describes the registers and memory locations present in a particular device. It
also specifies the protocol that is used to communicate with the device (e.g. I2C,
MDIO, or SPI). All of the DDF files are located in the Devices subdirectory. When
the PC-I2C software is started, all of the DDF files are read and the information is
used to generate the supported Bus Protocol and Device lists in the PC-I2C
software. In order to add support for new devices to the PC-I2C software, a new
DDF file must be created and placed in the Devices subdirectory. This new
device will show up in the supported device list the next time the PC-I2C software
is started.

The DDF file consists of identifier tokens followed by their corresponding
values. The identifier tokens are grouped into one of three different descriptor
blocks. These blocks are the Device Block, the Register Block, and the Memory
Block. There must be a single Device Block as the first descriptor block in the file.
The Device block is then followed by one or more Register Blocks and possibly a
single memory Block. The format of these blocks can vary depending on the type
of bus protocol used to communicate with the device. These differences are
notes in the sections below. Note that all tokens are enclosed in square brackets
[] and the values can be a HEX value (preceded by 0x), a decimal value (with a
leading 0), or an ASCII string enclosed by double quotes.

Comments can be added to the DDF file by starting a line with two forward
slashes (//). The DDF file parser will ignore any lines that start with the comment
characters. A comment is required on the first line in order to ensure that a text
editor was used.

5.7.2 [DEVICE]

The DEVICE Block must be the first descriptor block encountered in the DDF
file. It is used to define the basic characteristics of the device. These
characteristics include the Device Name, the Device Description, the Device
Type, and the valid Base Addresses of the device. There can be only one
DEVICE Block in the DDF file.

[NAME]

The [NAME] token is used to define the name of the device. The ASCII string
following this token will be displayed in the Device list of the PC-I2C software.
This string can be up to 64 characters long and can include spaces and other
special characters.

[DESC]

The [DESC] token is used to define a description of the device. The ASCII
string following this token will be displayed below the Device list of the PC-I2C
software when this device is selected. This string can be up to 64 characters long
and can include spaces and other special characters.

 11

[TYPE]
The [TYPE] token is used to define the bus interface protocol for this device.

The ASCII string following this token will determine the bus protocol. The
currently supported values are:

• I2C – This token defines a standard I2C device
• MDIO_22 – This token defines an MDIO device that adheres to IEEE

802.3 Clause 22 (old MDIO)
• MDIO_45 – This token defines an MDIO device that adheres to IEEE

802.3ae Clause 45 (10G MDIO)
• SPI – This token defines a SPI device

[CS POLARITY]
The [CS POLARITY] token is used to define the value held at CS when a

command is being sent for the SPI protocol. This value is ignored for all other
protocols. The currently supported values are:

• High, One, 1 – This token defines a logic value of 1.
• Low, Zero, 0 – This token defines a logic value of 0.
• None, N/A – This token defines the CS line as unnecessary.

 [ADDR]
The [ADDR] token is used to define the address(es) associated with this

device. Its meaning changes depending on the value of the TYPE token as
follows:

• I2C – The values listed after the token are the valid Slave addresses for
this device. If more than one Slave address is defined, the values are
separated by commas.

• MDIO_22 – The value listed after the token is the 5 bit address of the PHY
to be accessed.

• MDIO_45 – This address is the two 5 bit addresses used to address the
MMD.

• SPI – Not applicable.

An Example Device Block

The following example is for a Philips Semiconductor PCF8582C EEPROM
device. It is an I2C device with 8 possible Slave addresses.

 [DEVICE]
 [NAME] “PCF8582C”
 [DESC] “Philips PCF8582C 256 x 8 bit EEPROM”
 [TYPE] “I2C”
 [ADDR] 0xa0,0xa2,0xa4,0xa6,0xa8,0xaa,0xac,0xae

5.7.3 [REGISTER]

The REGISTER block is used to define the characteristics of a single register
within a device. These characteristics include the Register Name, the Register
Address, the Register Size, and the Register Type. There can be as many

 12

REGISTER Blocks as needed, in the DDF file, to fully describe every register in
the device.

[REG NAME]

The [REG NAME] token is used to define the name of the register. The ASCII
string following this token will be displayed in the register list of the PC-I2C
Register Dialog. This string can be up to 64 characters long.

[REG ADDR]

The [REG ADDR] token is used to define the address of the register. The
value following this token will be displayed along with the register name in the
register list of the PC-I2C Register Dialog. This is the value that will be used as
the address for reading and writing to this particular register. If the register has
no address (i.e. there is only one register that can be read), then N/A should be
entered for this value. (See the PCF8574A.DDF for an example.)

[REG SIZE]

The [REG SIZE] token is used to define the data size of the register. The
value following this token is the data size in bytes for this register. A value of
0x01 would correspond to an 8-bit register; a value of 0x02 would correspond to
a 16-bit register; etc.

[REG TYPE]

The [REG TYPE] token is used to define the access type of the register. The
ASCII string following this token will determine the access type. The currently
supported values are:

• RW – The register can be both read and written. Both the ‘R’ and ‘W’
buttons for this register will be enabled.

• RO – The register can only be read. The ‘R’ button will be enabled and the
‘W’ button will be disabled for this register.

• WO – The register can only be written. The ‘W’ button will be enabled and
the ‘R’ button will be disabled for this register.

• RSV – The register is a “Reserved” register. Both the ‘R’ and ‘W’ buttons
for this register will be enabled. Also, if the “Display Reserved Registers”
option is not selected on the PC-I2C main window, all registers with a type
of RSV will be hidden.

An Example Register Block

The following example is for the Control/Status register of the Philips
Semiconductor PCF8583 Clock/Calendar chip. The register is 8 bits wide and is
a read/write register.

[REGISTER]
 [REG NAME] “Control/Status”
 [REG ADDR] 0x00
 [REG SIZE] 0x01
 [REG TYPE] “RW”

 13

5.7.4 [MEMORY]
The MEMORY block is used to define the characteristics of a memory array

within a device. These characteristics include the Memory Block Name, the
Memory Base Address, the Memory Size, the Memory Type, the Page Write
Size, and the Write Delay time. There can be only one MEMORY Block per DDF
file.

[MEM NAME]

The [MEM NAME] token is used to define the name of the memory block. The
ASCII string following this token will be displayed in the tab of the PC-I2C
Memory Dialog. This string can be up to 64 characters long and can include
spaces and other special characters.

[MEM ADDR]

The [MEM ADDR] token is used to define the base address of the memory
block. The value following this token will be used as the start of the memory
block and will be the first address displayed when the Memory Dialog is opened.

[MEM SIZE]

The [MEM SIZE] token is used to define the size (in bytes) of the memory
block. The value following this token will be used to determine the amount of
memory that can be displayed and modified.

[MEM WIDTH]

The [MEM WIDTH] token is used to define the width (in bytes) of the memory
word. The value following this token will be used to determine the method to be
used when reading or writing to memory. If this value is more than 1, then the
entire memory array will be used for all read, write, and erase operations.
Memory is only displayed in bytes.

 [MEM TYPE]

The [MEM TYPE] token is used to define the access type of the memory
block. The ASCII string following this token will determine the access type. The
currently supported values are:

• RW – The memory block can be both read and written.
• RO – The memory block can only be read.

[MEM PAGE]
The [MEM PAGE] token is used to define the page write size for the memory

block. The value following this token determines the number of bytes that can be
written to memory block in a single instruction. This value is only relevant for
EEPROM/FLASH type devices that utilize the page write mode. For other
devices, this value can be set to the memory block size.

[MEM WDLY]

The [MEM WDLY] token is used to define the write delay for the memory
block. The value following this token determines the amount of time (in ms) to

 14

delay after a write instruction, before the next access occurs. This prevents the
overlap of operations due to excessive write times for some devices.

An Example Memory Block

The following example is for a Philips Semiconductor PCF8583
Clock/Calendar chip with 240 bytes of SRAM (running from address 0x10 to
0xff). The page write is set to 8 bytes and the write delay is set to 1ms.

[MEMORY]
 [MEM NAME] "Memory"
 [MEM ADDR] 0x0010
 [MEM SIZE] 0x00f0
 [MEM WIDTH] 01
 [MEM TYPE] "RW"
 [MEM PAGE] 0x08
 [MEM WDLY] 0x01

5.7.5 SPI Specific [MEMORY] Tokens

These [MEMORY] Tokens are used in the DDF file for SPI only. SPI support
is limited to memory devices at this time.

[MEM POSTWCLK]

The [MEM POSTWCLK] token is used to define the number of clocks to wait
for a response after completing a write or erase command. The CS line is toggled
and when the DIN line matches the value specified by [MEM POSTWPOL], PC-
I2C will toggle the CS line and move on to the next command.

[MEM POSTWPOL]

The [MEM POSTWPOL] token is used to define the value on the DIN line that
signifies that the target device is finished writing or erasing.

[MEM ENWIDTH]

The [MEM ENWIDTH] token is used to define the size (in bits) of the target
device’s Enable Command. The value following this token will be used to
determine the width of the command. This token also determines the number of
entries allowed in the [MEM ENABLE] token.

[MEM ENABLE]

The [MEM ENABLE] token is used to define the command that allows writing
to and erasing from the device. The ASCII string following this token will
determine the command. The currently supported values for each bit are:

• High, One, 1 – The current bit is a logic 1.
• Low, Zero, 0 – The current bit is a logic 0.

[MEM DISWIDTH]
The [MEM DISWIDTH] token is used to define the size (in bits) of the target

device’s Disable Command. The value following this token will be used to

 15

determine the width of the command. This token also determines the number of
entries allowed in the [MEM DISABLE] token.

[MEM DISABLE]

The [MEM DISABLE] token is used to define the command that disallows
writing to and erasing from the device. The ASCII string following this token will
determine the command. The currently supported values for each bit are:

• High, One, 1 – The current bit is a logic 1.
• Low, Zero, 0 – The current bit is a logic 0.

[MEM WWIDTH]
The [MEM WWIDTH] token is used to define the size (in bits) of the target

device’s Write Command. The value following this token will be used to
determine the width of the command. This token also determines the number of
entries allowed in the [MEM WCOM] token.

[MEM WCOM]

The [MEM WCOM] token is used to define the command that writes to the
device. The ASCII string following this token will determine the command. The
currently supported values for each bit are:

• High, One, 1 – The current bit is a logic 1.
• Low, Zero, 0 – The current bit is a logic 0.
• A# – The current bit is address bit # (starting with address bit 0).
• D# – The current bit is data bit # (starting with data bit 0).

[MEM RWIDTH]
The [MEM RWIDTH] token is used to define the size (in bits) of the target

device’s Read Command. The value following this token will be used to
determine the width of the command. This token also determines the number of
entries allowed in the [MEM RCOM] token.

[MEM RCOM]

The [MEM RCOM] token is used to define the command that reads from the
device. The ASCII string following this token will determine the command. The
currently supported values for each bit are:

• High, One, 1 – The current bit is a logic 1.
• Low, Zero, 0 – The current bit is a logic 0.
• A# – The current bit is address bit # (starting with address bit 0).
• D# – The current bit is data bit # (starting with data bit 0).

[MEM EWIDTH]
The [MEM EWIDTH] token is used to define the size (in bits) of the target

device’s Erase Command. The value following this token will be used to
determine the width of the command. This token also determines the number of
entries allowed in the [MEM ECOM] token.

 16

[MEM ECOM]
The [MEM ECOM] token is used to define the command that erases from the

device. The ASCII string following this token will determine the command. The
currently supported values for each bit are:

• High, One, 1 – The current bit is a logic 1.
• Low, Zero, 0 – The current bit is a logic 0.
• A# – The current bit is address bit # (starting with address bit 0).

[MEM ERALWIDTH]
The [MEM ERALWIDTH] token is used to define the size (in bits) of the target

device’s Erase All Command. The value following this token will be used to
determine the width of the command. This token also determines the number of
entries allowed in the [MEM ERAL] token.

[MEM ERAL]

The [MEM ERAL] token is used to define the command that erases all of the
device. The ASCII string following this token will determine the command. The
currently supported values for each bit are:

• High, One, 1 – The current bit is a logic 1.
• Low, Zero, 0 – The current bit is a logic 0.

An Example SPI Memory Block
The following example is for a Atmel AT93C46A EEPROM chip with 128

bytes (running from address 0x00 to 0x7f). The page write is set to 8 bytes and
the write delay is set to 1ms.

[MEMORY]
 [MEM NAME] "SPI Memory"
 [MEM ADDR] 0x00
 [MEM SIZE] 0x40
 [MEM WIDTH] 02
 [MEM TYPE] "RW"
 [MEM PAGE] 0x08
 [MEM WDLY] 01
 [MEM POSTWCLK] 01000
 [MEM POSTWPOL] High
 [MEM ENWIDTH] 010
 [MEM ENABLE] 0, 1, 0, 0, 1, 1, 0, 0, 0, 0
 [MEM DISWIDTH] 010
 [MEM DISABLE] 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
 [MEM WWIDTH] 026
 [MEM WCOM] 0, 1, 0, 1, A5, A4, A3, A2, A1, A0, D15, D14, D13,

D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1,
D0

 [MEM RWIDTH] 026

 17

 [MEM RCOM] 0, 1, 1, 0, A5, A4, A3, A2, A1, A0, D15, D14, D13,
D12, D11, D10, D9, D8, D7, D6, D5, D4, D3, D2, D1,
D0

 [MEM EWIDTH] 010
 [MEM ECOM] 0, 1, 1, 1, A5, A4, A3, A2, A1, A0
 [MEM ERALWIDTH] 010
 [MEM ERAL] 0, 1, 0, 0, 1, 0, 0, 0, 0, 0

5.7.6 Example Device Descriptor File

The following example is the entire DDF file for the Philips Semiconductor
PCF8583 Clock/Calendar Chip with 240 bytes of SRAM. It demonstrates all three
types of Descriptor Blocks.

// PCF8583.ddf
//
// This is the device definition file (DDF) for the Philips
// Semiconductor PCF8583 I2C Clock Calendar Chip with 240 x 8 RAM.
//
[DEVICE]
 [NAME] "PCF8583"
 [DESC] "Philips PCF8583 Clock Calendar with 240 x 8 RAM"
 [TYPE] "I2C"
 [ADDR] 0xA2

[REGISTER]
 [REG NAME] "Control/Status"
 [REG ADDR] 0x00
 [REG SIZE] 1
 [REG TYPE] "RW"

[REGISTER]
 [REG NAME] "Hundredths"
 [REG ADDR] 0x01
 [REG SIZE] 1
 [REG TYPE] "RW"

[REGISTER]
 [REG NAME] "Seconds"
 [REG ADDR] 0x02
 [REG SIZE] 1
 [REG TYPE] "RW"

[REGISTER]
 [REG NAME] "Minutes"
 [REG ADDR] 0x03
 [REG SIZE] 1
 [REG TYPE] "RW"

 18

[REGISTER]
 [REG NAME] "Hours"
 [REG ADDR] 0x04
 [REG SIZE] 1
 [REG TYPE] "RW"

[REGISTER]
 [REG NAME] "Year/Date"
 [REG ADDR] 0x05
 [REG SIZE] 1
 [REG TYPE] "RW"

[REGISTER]
 [REG NAME] "Weekday/Month"
 [REG ADDR] 0x06
 [REG SIZE] 1
 [REG TYPE] "RW"

[REGISTER]
 [REG NAME] "Timer"
 [REG ADDR] 0x07
 [REG SIZE] 1
 [REG TYPE] "RW"

[REGISTER]
 [REG NAME] "Alarm Control"
 [REG ADDR] 0x08
 [REG SIZE] 1
 [REG TYPE] "RW"

[REGISTER]
 [REG NAME] "Alarm Hundredths"
 [REG ADDR] 0x09
 [REG SIZE] 1
 [REG TYPE] "RW"

[REGISTER]
 [REG NAME] "Alarm Seconds"
 [REG ADDR] 0x0a
 [REG SIZE] 1
 [REG TYPE] "RW"

[REGISTER]
 [REG NAME] "Alarm Minutes"
 [REG ADDR] 0x0b
 [REG SIZE] 1
 [REG TYPE] "RW"

 19

[REGISTER]
 [REG NAME] "Alarm Hours"
 [REG ADDR] 0x0c
 [REG SIZE] 1
 [REG TYPE] "RW"

[REGISTER]
 [REG NAME] "Alarm Date"
 [REG ADDR] 0x0d
 [REG SIZE] 1
 [REG TYPE] "RW"

[REGISTER]
 [REG NAME] "Alarm Month"
 [REG ADDR] 0x0e
 [REG SIZE] 1
 [REG TYPE] "RW"

[REGISTER]
 [REG NAME] "Alarm Timer"
 [REG ADDR] 0x0f
 [REG SIZE] 1
 [REG TYPE] "RW"

[MEMORY]
 [MEM NAME] "Memory"
 [MEM ADDR] 0x0010
 [MEM SIZE] 0x00f0
 [MEM TYPE] "RW"
 [MEM PAGE] 0x08
 [MEM WDLY] 0x01

 20

5.8 Appendix H: Sequence Descriptor Files Specification

5.8.1 Sequence Descriptor File Overview

The Sequence Description File (SDF) is an ASCII text file that describes the
sequence of instructions that the user intends to send to the I2C, MDIO, or SPI
bus in a high-speed environment. All of the SDF files are located in the
Sequence subdirectory. When the PC-I2C software is started, all of the SDF files
are read and the information is used to generate the supported Sequence list in
the PC-I2C software. In order to add a sequence to the PC-I2C software, a new
SDF file must be created and placed in the Sequence subdirectory. This new
device will show up in the supported device list the next time the PC-I2C software
is started.

The SDF file consists of instruction tokens followed by their corresponding
values. Four description instructions are required and the file parser will ignore
any sequence files without one of each. Note that all tokens are followed by at
least one space or tab and the values can be a HEX value (preceded by 0x), a
decimal value (with a leading 0), or an ASCII string enclosed by double quotes.
Instruction lines must be limited to 255 characters total.

Comments can be added to the SDF file by starting a line with two forward
slashes (//). The SDF file parser will ignore any lines that start with the comment
characters. A comment is required on the first line in order to ensure that a text
editor was used.

5.8.2 Sequence Descriptor File Tokens

The following section contains all of the valid tokens used in a Sequence
Descriptor File. A short description follows an example of each.

Note: While specific positions of the NAME, DESC, USE, and ADDR tokens
are not required, it is suggested that they occur as the first four instructions in
order to minimize confusion.

NAME Token

NAME “Any ASCII string representing the name of the Sequence ”

The NAME token is used to set the name that will be displayed within the
Sequence list in PC-I2C. The only character that cannot be used within the
quotation marks is another quotation mark. This is a required token.

DESC Token

DESC “Any ASCII string representing the description of the Sequence ”

The DESC token is used to set the description that will be displayed when this
Sequence’s name is chosen in the Sequence list in PC-I2C. The only character
that cannot be used within the quotation marks is another quotation mark. This is
a required token.

 21

USE Token

USE “The DDF file name being used for this Sequence followed by .ddf ”

The USE token is used to set the name of the DDF file that will be used when
running this Sequence in PC-I2C. The name of the file is case sensitive. The file
extension (“.ddf”) is required. The characters that cannot be used within the
quotation marks are another quotation mark and any character which cannot be
used in file naming. This is a required token.

ADDR Token

ADDR 0xFF 0x1F
ADDR 0255

The ADDR token is used to set the address of the specific device that will be
used when running this Sequence in PC-I2C. This token requires input of one
address for I2C and MDIO 22, and the port address followed by the device
address for MDIO 45. This is a required token.

READ Token

READ MEM[0xFFFF] DISPLAY(“Heading=”)
READ REG[065535] LOG(“Heading=”)

The READ token reads the specified memory(MEM) or register(REG) and
displays(DISPLAY) the value or logs(LOG) it to a “.log” file with the same name
as the Sequence Descriptor File and a “-##” added to the name. This was
chosen in order to preserve previously logged files. The register is specified by
the register number in the .ddf file while the memory is specified by the address
which is to be accessed. The quotation marks can be filled with whatever the
user would like to appear in front of the output value. This will always be
preceded by “Line #: ” where # is the line number. The base, hex or
decimal, used for specifying the register or memory specifies the base of the
output. Again, the total output size, including line number, cannot exceed 255
characters. With SPI, the MEM token specifies byte addressing and the REG
token specifies word addressing. This is only applicable when the Memory Width
is greater than 1.

WRITE Token

WRITE MEM[0xFFFF] 0256
WRITE REG[065535] 0xFF

The WRITE token writes the specified data, represented in hex or decimal, to
the specified memory(MEM) or register(REG). The register is specified by the
register number in the .ddf file while the memory is specified by the address

 22

which is to be accessed. This particular action is followed by an automatic delay
of 100 milliseconds.

PAUSE

PAUSE 00
PAUSE 016777216
PAUSE 0x1000000

The PAUSE token signifies that the sequencer should pause execution for at
least the specified length of time in milliseconds. Note: the specified amount of
time is a minimum amount, not a definite amount. Indefinite or user ended
pauses are signified by a value of zero (00). The value entered after the PAUSE
token must not exceed 0x1000000.

START_LOOP Token

START_LOOP
START_LOOP 032767
START_LOOP 0x7FFF

The START_LOOP token signifies that the next line is the beginning of a loop

which will run a number of times equal to the value following the START_LOOP
token. Infinite loops are signified by the absence of a value, but a warning will
pop up on loading PC-I2C. If both tokens, START_LOOP and END_LOOP,
specify a value for the number of loops, the value at START_LOOP takes
precedence. The value entered after the START_LOOP token must not exceed
0x7FFF.

END_LOOP Token

END_LOOP
END_LOOP 032767
END_LOOP 0x7FFF

The END_LOOP token signifies the end of a loop which will run a number of
times equal to the value following the END_LOOP token. Infinite loops are
signified by the absence of a value, but a warning will pop up on loading PC-I2C.
On an infinite loop, a dialog will pop up every 10,000 loops asking whether or not
to continue looping. If “No” is chosen, the sequencer will continue past the
END_LOOP token. If both tokens, START_LOOP and END_LOOP, specify a
value for the number of loops, the value at START_LOOP takes precedence.
The value entered after the END_LOOP token must not exceed 0x7FFF.

5.8.3 Example Sequence Descriptor File
 The following example is the entire file “Sequencer Demo.sdf” which uses
the PCF8582C included with PC-I2C-KIT to demonstrate all the commands that
can be used in the sequencer.

 23

// This is a test file for testing the sequencer

//This instruction specifies the label to be displayed in the "Sequence:" combo

box in PC-I2C
NAME "Demonstration"

//This instruction specifies the description to be displayed when this sequence is

selected in the "Sequence:" combo box
DESC "This is a test file for demonstrating the sequencer."

//This instruction specifies the DDF (Device Descriptor File) to be used
USE "PCF8582C.ddf"

//This instruction specifies the address of the device to be used
ADDR 0xA8

//This instruction specifies a read from memory address 0x01 to be displayed to

the screen with the message "Memory at address 0x01 is"
READ MEM[0x01] DISPLAY("Memory at address 0x01 is")

//This instruction specifies a write to memory address 0x05 of a value of 0x01
WRITE MEM[0x05] 0x01

//This instruction specifies a pause for at least 598 milliseconds.
PAUSE 0598

//This instruction specifies a read from memory address 0x05 to be logged to the

log file with the message "But the memory located at 0x05 is"
READ MEM[0x05] LOG("But the memory located at 0x05 is")

//This instruction specifies the start of a loop with 25 iterations
START_LOOP 25

//This instruction specifies a read from memory address 0x01 to be logged to the

log file with the message "Can the Memory at 0x01 be represented in
decimal like this?=>"

READ MEM[01] LOG("Can the Memory at 0x01 be represented in decimal like
this?=>")

//This instruction specifies the end of a loop
END_LOOP

//This instruction specifies the start of a loop
START_LOOP

 24

 25

//This instruction specifies a read from memory address 0x05 to be logged to the
log file with the message "Type anything you want here. Anything at all. As
long as you don't exceed a total instruction length of 256 characters."

READ MEM[0x05] LOG("Type anything you want here. Anything at all. As long
as you don't exceed a total instruction length of 256 characters.")

//This instruction specifies the end of a loop with 5 iterations
END_LOOP 5

//This instruction specifies the start of a loop with 25 iterations
START_LOOP 25

//This instruction specifies a write to memory address 0x15 of a value of 0x01
WRITE MEM[21] 0x01

//This instruction specifies a read from memory address 0x15 to be logged to the

log file with the message "MemoryCheck="
READ MEM[0x15] LOG("MemoryCheck=")

//This instruction specifies a read from memory address 0x15 to be logged to the

log file with the message "MemoryCheck="
READ MEM[21] LOG("MemoryCheck=")

//This instruction specifies the end of a loop with 4 iterations but is overridden by

the Start_Loop command's number of iterations
END_LOOP 4

	Quick Start Manual
	1. INTRODUCTION
	2. PC-I2C-KIT CONTENTS
	3. BEFORE YOU BEGIN
	3.1 Reference Information
	3.2 Requirements
	3.3 Power Requirements

	4. GENERAL OPERATION
	4.1 Installing the PC-I2C Software
	4.2 Connecting the PC-I2C Board to your computer
	4.3 Setting the Bus Speed
	4.4 I2C Operation
	4.4.1 On-Board EEPROM (U2)
	4.4.2 Connecting the PC-I2C Board to your peripheral
	4.4.3 Configuring the PC-I2C Board
	4.5 MDIO Operation
	4.5.1 MDIO Support
	4.5.2 MDIO Setup of the PC-I2C Board
	4.5.3 On board I2C EEPROM
	4.6 SPI Operation
	4.6.1 SPI Support
	4.6.2 SPI Setup of the PC-I2C Board
	4.6.3 On board I2C EEPROM

	5. APPENDICES
	5.1 Appendix A: Jumper Settings
	5.2 Appendix B: Connector Functions and Locations
	5.3 Appendix C: Software Updates
	5.4 Appendix D: Technical Support
	5.5 Appendix E: Disclaimer
	5.6 Appendix F: Verification Procedure
	5.7 Appendix G: Device Descriptor Files Specification
	5.7.1Device Descriptor File Overview
	[DEVICE]
	[REGISTER]
	[MEMORY]
	SPI Specific [MEMORY] Tokens
	Example Device Descriptor File

	5.8 Appendix H: Sequence Descriptor Files Specification
	5.8.1 Sequence Descriptor File Overview
	5.8.2 Sequence Descriptor File Tokens
	5.8.3 Example Sequence Descriptor File

