

www.ti.com

SCHS380 A -JUNE 2010-REVISED AUGUST 2011

CMOS QUAD LOW-TO-HIGH VOLTAGE SHIFTER

Check for Samples: CD40109B-Q1

FEATURES

- Qualified for Automotive Applications
- Independent of Power Supply Sequence Considerations
 - V_{CC} Can Exceed V_{DD}
 - Input Signals can Exceed Both V_{CC} and V_{DD}
- Up and Down Level-Shifting Capability
- Three-State Outputs With Separate Enable Controls
- Standardized Symmetrical Output Characteristics
- 100% Tested for Quiescent Current at 20 V
- Maximum Input Current:
 - 1 µA at 18 V Over Full Package-Temperature Range
 - 100 nA at 18 V and 25°C
- Noise Margin (Full Package-Temperature Range):
 - 1 V at V_{CC} = 5 V, V_{DD} = 10 V
 - 2 V at V_{CC} = 10 V, V_{DD} = 15 V
- 5-V, 10-V, and 15-V Parametric Ratings
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard specifications for

DESCRIPTION

CD40109B contains four low-to-high-voltage level-shifting circuits. Each circuit will shift a low-voltage digital-logic input signal (A, B, C, D) with logical $1 = V_{CC}$ and logical $0 = V_{SS}$ to a high-voltage output signal (E, F, G, H) with logical $1 = V_{DD}$ and logical $0 = V_{SS}$.

The RCA-CD40109, unlike other low-to-high level-shifting circuits, does not require the presence of the high-voltage supply (V_{DD}) before the application of either the low-voltage supply (V_{CC}) or the input signals. There are no restrictions on the sequence of application of V_{DD} , V_{CC} , or the input signals. In addition, with one exception there are no restrictions on the relative magnitudes of the supply voltages or input signals within the device maximum ratings, provided that the input signal swings between V_{SS} and at least 0.7 V_{CC} ; V_{CC} may exceed V_{DD} , and input signals may exceed V_{CC} and V_{DD} . When operated in the mode $V_{CC} > V_{DD}$, the CD40109 will operate as a high-to-low level-shifter.

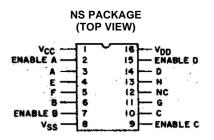
The CD40109 also features individual three-state output capability. A low level on any of the separately enabled three-state output controls produces a high-impedance state in the corresponding output.

ORDERING INFORMATION⁽¹⁾

T _A	PACK	AGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
–40°C to 125°C	SOIC – NS	Reel of 2000	CD40109BQNSRQ1	CD40109BQ	

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Description of 'B' Series CMOS Devices"

 Latch-Up Performance Meets 50 mA per JESD 78, Class I

APPLICATIONS

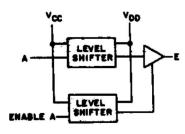
- High-or-Low Level-Shifting With Three-State Outputs for Unidirectional or Bidirectional Bussing
- Isolation of Logic Subsystem Using Separate Power Supplies from Supply Sequencing, Supply Loss, and Supply Regulation Considerations

CD40109B-Q1

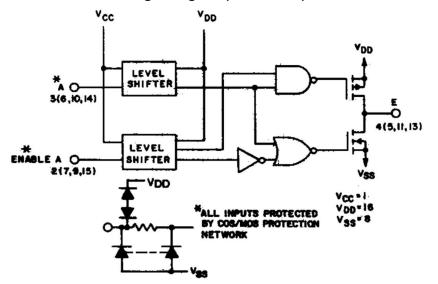
SCHS380 A -JUNE 2010-REVISED AUGUST 2011

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.


ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

TRUTH TABLE⁽¹⁾


INP	OUTPUTS	
A, B, C, D	ENABLE A, B, C, D	E, F, G, H
0	1	0
1	1	1
Х	0	Z

(1) 0 = V_{SS}, 1 = V_{CC} at inputs and V_{DD} at outputs, X = Don't care, Z = High impedance

Functional Diagram (1 of 4 Units)

Logic Diagram (1 of 4 Units)

SCHS380 A -JUNE 2010-REVISED AUGUST 2011

www.ti.com

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air	temperature range	(unless otherwise noted)

			VALUE	UNIT
V_{DD}	DC supply voltage range	Voltages referenced to V _{SS} terminal	-0.5 to +20	V
	Output voltage range	All outputs	–0.5 to V _{DD} + 0.5	V
	DC input current	Any one input	±10	mA
P _D Power dissipation per package		$T_{A} = -40^{\circ}C \text{ to } + 100^{\circ}C$	500	mW
		T _A = 100°C to + 125°C	Derate linearly at 12 mW/°C to 200 mW	
	Device dissipation per output tra (for T_A = full package-temperatu		100	mW
T _A	Operating-temperature range	-40 to +125	°C	
T _{stg}	Storage temperature range	-65 to +150	°C	
	Latch-Up Performance per JES	D 78, Class I	50	mA

(1) Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

		MIN	MAX	UNIT
V _{DD}	Supply-voltage range (for T _A = full package-temperature range)	3	18	V

STATIC ELECTRICAL CHARACTERISTICS

		C	ONDITIO	NS		LIMITS A			PERATUR	RES (°C)	
	PARAMETER	Vo	V _{IN}	V _{DD}	-40	+85	+125		+25		UNIT
		(V)	(V)	(V)	40			MIN	TYP	MAX	
			0, 5	5	1	30	30		0.02	1	
I Mox	Quiescent device current		0, 10	10	2	60	60		0.02	2	
I _{DD} Max	Quiescent device current		0, 15	15	4	120	120		0.02	4	μA
			0, 20	20	20	600	600		0.04	20	
		0.4	0, 5	5	0.61	0.42	0.36	0.51	1		
I _{OL} Min	Output low (sink) current	0.5	0, 10	10	1.5	1.1	0.9	1.3	2.6		
		1.5	0, 15	15	4	2.8	2.4	3.4	6.8		
		4.6	0, 5	5	-0.61	-0.42	-0.36	-0.51	-1		mA
		2.5	0, 5	5	-1.8	-1.3	-1.15	-1.6	-3.2		
I _{OH} Min	Output high (source) current	9.5	0, 10	10	-1.5	-1.1	-0.9	-1.3	-2.6		
		13.5	0, 15	15	-4	-2.8	-2.4	-3.4	-6.8		
			0, 5	5	0.05				0	0.05	
V _{OL} Max	Output voltage: low-level		0, 10	10		0.05			0	0.05	
			0, 15	15		0.05			0	0.05	.,
			0, 5	5		4.95		4.95	5		V
V _{OH} Min	Output voltage: high-level		0, 10	10		9.95		9.95	10		
			0, 15	15		14.95		14.95	15		
I _{IN} Max	Input current		0, 18	18	±0.1	±1	±1		±10 ⁻⁵	±0.1	μA
I _{OUT} Max			0, 18	18	±0.4	±12	±12		±10 ⁻⁴	±0.4	μA
		1, 9	5	10		1.5				1.5	
V _{IL} Max	Input low voltage	1.5, 13.5	10	15		3				3	
		1, 9	5	10		3.5		3.5			V
V _{IH} Min	Input high voltage	1.5, 13.5	10	15		7		7			

SCHS380 A - JUNE 2010-REVISED AUGUST 2011

Texas Instruments

www.ti.com

DYNAMIC ELECTRICAL CHARACTERISTICS

 T_{A} = 25°C, Input t_r/t_f = 20 ns, C_{L} = 50 pF, R_{L} = 200 k Ω (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	SHIFTING MODE	V _{CC} (V)	V _{DD} (V)	MIN	МАХ	UNIT
				5	10	300	600	
			L–H	5	15	220	440	
	Propagation delay time,			10	15	180	360	
t _{PHL}	high-to-low level, data input to output			10	5	250	500	ns
		H–L		15	5	250	500	
				15	10	120	240	
				5	10	130	260	
			L–H	5	15	120	240	
	Propagation delay time,			10	15	70	140	20
t _{PLH}	low-to-high level, data input to output			10	5	230	460	ns
			H – L	15	5	230	460	
			15	10	80	160		
				5	10	60	120	
	Drenenstien delevitiere		L – H	5	15	75	150	
	Propagation delay time, 3-state disable, delay, output high to high impedance			10	15	35	70	ns
t _{PHZ}		$R_L = 1 k\Omega$		10	5	200	400	
			H – L	15	5	200	400	
				15	10	40	80	
				5	10	370	740	
Dronog	Drongation dology time		L–H	5	15	300	600	
	Propagation delay time, 3-state disable, delay,			10	15	250	500	
t _{PLZ}	output low to high	$R_L = 1 k\Omega$		10	5	250	500	ns
	impedance		H – L	15	5	250	500	
				15	10	130	260	
				5	10	320	640	
	Drongastion dology time		L – H		15	230	460	
	Propagation delay time, 3-state disable, delay,			10	15	180	360	ns
t _{PZH}	output high impedance	$R_L = 1 k\Omega$		10	5	300	600	
	to high		H – L	15	5	300	600	
				15	10	130	260	
				5	10	100	200	
	Drongastion dology time		L–H	5	15	80	160	
	Propagation delay time, 3-state disable, delay,			10	15	40	80	
t _{PZL}	output high impedance	$R_L = 1 k\Omega$		10	5	200	400	ns
	to low		H – L	15	5	200	400	
				15	10	40	80	
				5	10	50	100	
			L – H	5	15	40	80	
	Tropolition time			10	15	40	80	ns
t _{THL} , t _{TLH}	Transition time			10	5	100	200	
			H – L	15	5	100	200	
				15	10	50	100	
Ci	Input capacitance			Any	input	5	7.5	pF

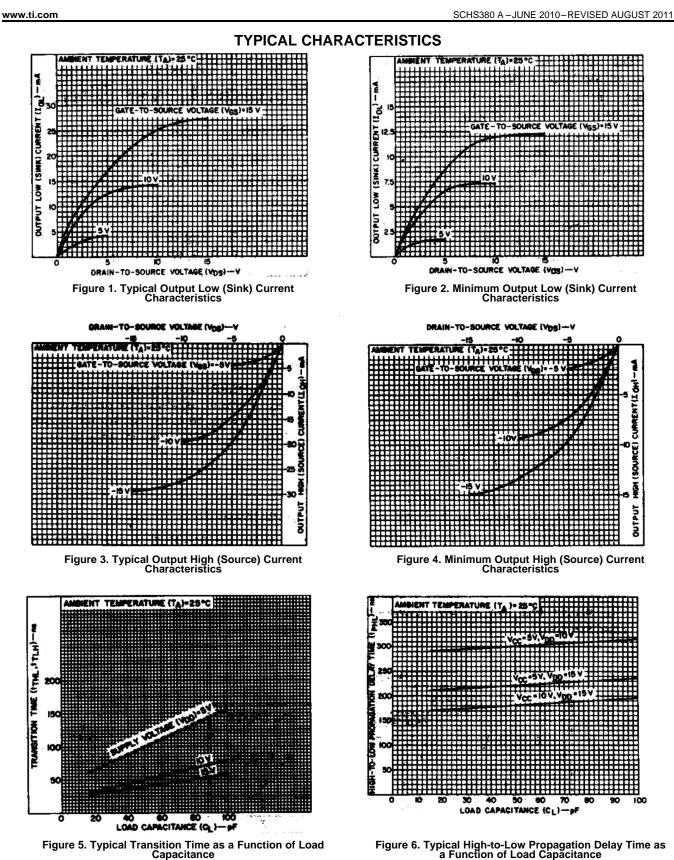
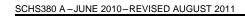



Figure 6. Typical High-to-Low Propagation Delay Time as a Function of Load Capacitance

Texas Instruments

www.ti.com

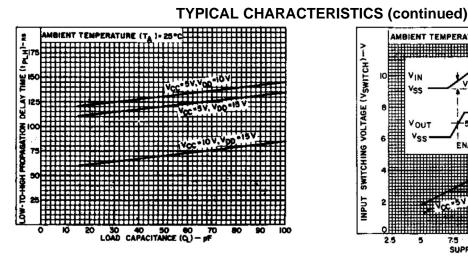


Figure 7. Typical Low-to-High Propagation Delay Time as a Function of Load Capacitance

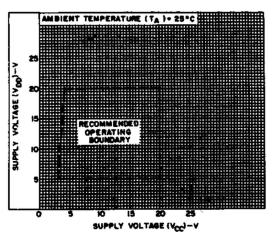


Figure 9. High-Level Supply Voltage vs Low-Level Supply Voltage

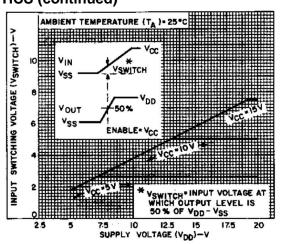


Figure 8. Typical Input Switching as a Function of High-Level Supply Voltage

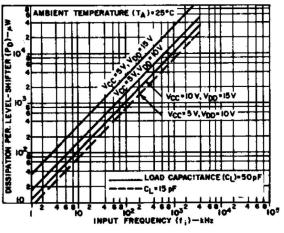


Figure 10. Typical Dynamic Power Dissipation as a Function of Input Frequency

SCHS380 A - JUNE 2010-REVISED AUGUST 2011

www.ti.com

PARAMETER MEASUREMENT INFORMATION

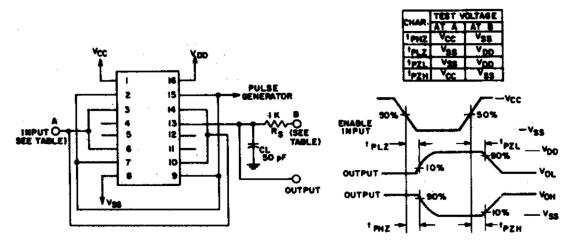


Figure 11. Output Enable Delay Times Test Circuit and Waveforms

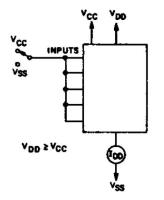


Figure 12. Quiescent Device Current Test Circuit

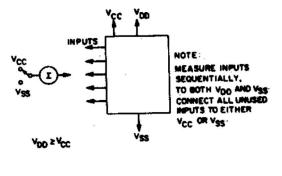
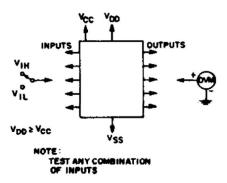



Figure 14. Input Current Test Circuit

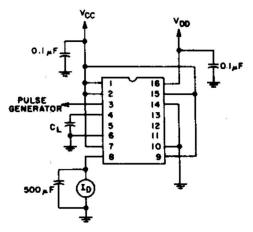
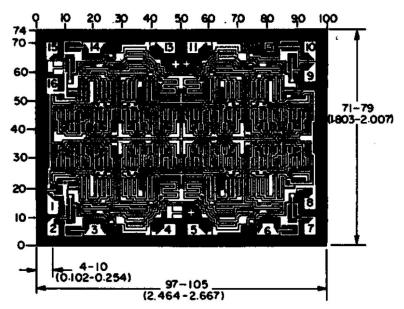



Figure 15. Dynamic Power Dissipation Test Circuit

www.ti.com

SCHS380 A -JUNE 2010-REVISED AUGUST 2011

Note: Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

Figure 16. Dimensions and Pad Layout

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
CD40109BQNSRQ1	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD40109B-Q1 :

• Catalog: CD40109B

• Military: CD40109B-MIL

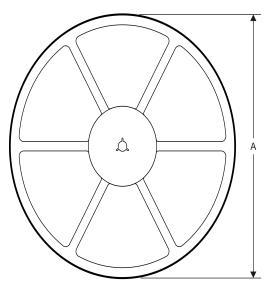
PACKAGE OPTION ADDENDUM

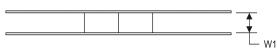
www.ti.com

30-Jan-2012

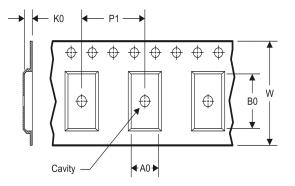
• Catalog - TI's standard catalog product

• Military - QML certified for Military and Defense Applications


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION


REEL DIMENSIONS

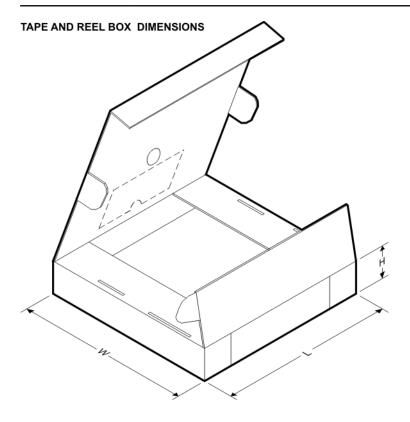
TEXAS INSTRUMENTS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD40109BQNSRQ1	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD40109BQNSRQ1	SO	NS	16	2000	367.0	367.0	38.0

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated